
HELLO, TOMORROW!
Robotics have the potential to impact CRT in a big way. How are startups and researchers tackling the complicated landscape?
When Dan Ding first started as a postdoctoral fellow at the University of Pittsburgh in 2001, she had never heard the term “rehabilitation robotics.” She attended robotics conferences while earning her Ph.D. in Hong Kong, but rarely saw sessions on healthcare applications, much less the type of work that would soon change the complex rehab technology (CRT) industry.
“I don’t think at the time the term was coined,” Ding, now an associate professor in the university’s Department of Rehabilitation Science and Technology, told Mobility Management. “I definitely witnessed the whole growth of this technology’s involvement in rehabilitation and assistive technology, so I feel very fortunate that, before that happened, I was able to get into this field.”
Ding’s early experiences are a far cry from the landscape of robotics in complex rehab today, where new startups have introduced technology ranging from eye-gaze wheelchair controls to blind-spot sensors that can be mounted on several parts of a power chair. Large manufacturers are following suit by integrating new developments, such as patient monitoring technology, into their seat cushions and chairs.
While there is a sense of unlimited possibilities for the applications of robotic technology, experts in the field say there are also immense challenges facing the industry, particularly in terms of the high costs for patients seeking the latest equipment and the regulatory hurdles for CRT companies trying to bring innovative products to market.
Braze Mobility’s sensor system
For Pooja Viswanathan, the CEO and founder of the Toronto-based blind-spot sensor manufacturer Braze Mobility, the CRT industry is just “skimming the surface” of what’s possible in terms of finding solutions for patients.
“I think there’s tremendous opportunity for growth as long as it’s customer-centric,” Viswanathan said in an interview. “The challenge in robotics is that it often ends up being a technology push. As long as the focus stays on the problems rather than the solutions and on the customer rather than the developer, there is tremendous opportunity.”
A WINDING ROAD FOR IBOT & TOYOTA
The path for robotics in complex rehab has been long and winding over the past two decades, including the widely publicized production (and later discontinuation) of the iBOT stair-climbing wheelchair system.
In 2003, Independence Technology — a division of healthcare giant Johnson & Johnson — introduced the iBOT to rave reviews from mainstream media, who hailed the wheelchair as a revolutionary device that “will force [wheelchair users] to reconsider virtually all the presumed boundaries in the world,” according to one Dateline NBC reporter.
But as Mobility Management reported at the time, Independence Technology hit several snags in its quest to sell the iBOT directly to consumers via clinician assessment and cut CRT providers from the distribution chain. The chair cost $26,000 at the time the company ceased production in 2009, and Medicare declined to classify its seat elevation or stairclimbing abilities as “medically necessary.” While popular with veterans and some clinicians, the iBOT also did not offer typical rehab functions, such as tilt, recline or elevating legrests. In addition, users needed the ability to use a traditional joystick.
Mobius Mobility’s iBOT
In turn, Independence Technology struggled to sell the chair, citing low demand before dissolving in 2009. The iBOT has continued to be revived by other companies, including Toyota North America and most recently by Mobius Mobility, which began promoting the chair last year with some added rehab functions.
Toyota is no longer involved with the iBOT nearly four years after signing an agreement with inventor Dean Kamen to develop the “next generation” of iBOT, according to Doug Moore, GM, Technology for Human Support at Toyota North America. Instead, Toyota has been at work on several mobility-related projects, demonstrating the Japanese mega-corporation’s commitment to becoming a “mobility company” rather than an automotive company, Moore said.
“We have been spending a ton of time, especially in this complex rehab area, making sure that we understand the real needs,” Moore told Mobility Management in an interview. “We’ve been looking at the end customers, whether it’s direct users, caregivers, care receivers or ATPs, PTs, DMEs, all these individuals. We’ve been having conversations across the whole world to understand what are the real challenges and what are the real needs that are out there.”
At the Consumer Electronics Show (CES) 2020 in January, Toyota’s display featured examples of mobility products that would be included in the company’s ideal “Woven City.” Those products included the Human Support Robot (HSR), an AI robot with voice-control capability, and a wheelchair-link battery electric vehicle (BEV) designed for “those who have difficulty walking and those in wheelchairs,” according to a press release.
Moore, who has risen to the top of the robotics team since joining Toyota in 2011, stopped short of committing to any mobility product releases from the company. He noted his experience working on Project BLAID, a wearable device for blind and visually impaired people that the company first publicized in 2016. While that and other mobility products have not been released yet, showcasing that Toyota is focused on developing inclusive products is important, Moore said.
“I’ve intentionally tried to make sure we don’t over-promise and under-deliver, because there’s still a lot of thinking that has to go into these platforms to make sure we can execute it right,” Moore said. “We want to show people that we are thinking and considering the true needs and the true value of what it means to bring solutions to the whole broad community, but at the same time we have to be careful and cautious about what we put out there.”
ROBOTICS PRODUCTS COME TO COMPLEX REHAB
Robotics engineers in the CRT and mobility world have one trait in common: a desire to see their algorithms and technical work turn into an application that changes people’s lives.
For Jay Beavers, a co-founder and managing member of Seattle-based Evergreen Circuits, the inspiration came from Steve Gleason, the former NFL player turned ALS activist. When Gleason challenged a group of Microsoft employees to create a system allowing him to drive his wheelchair with his eyes, they answered the call.
After Microsoft decided not to proceed into the medical device sector, Beavers and his partners created their own company and began to sell the Independence Drive system, which combines a power wheelchair, tablet computer and eye-tracking camera, in 2018.
“The thing that I think robotics will do that will really impact this industry is provide for more independent living and reduce the need for 24-hour caregivers,” Beavers said in an interview. “Japan is kind of on the cusp of this because they’re ahead of us in terms of having an aging population and not having enough caregivers. We in the U.S. are going to need to address the same issue in the next 20 to 30 years. That’s the biggest opportunity.”
Read the full article here: https://mobilitymgmt.com/Articles/2020/03/01/Robotics.aspx